VIGOR extended to annotate genomes for additional 12 different viruses
نویسندگان
چکیده
A gene prediction program, VIGOR (Viral Genome ORF Reader), was developed at J. Craig Venter Institute in 2010 and has been successfully performing gene calling in coronavirus, influenza, rhinovirus and rotavirus for projects at the Genome Sequencing Center for Infectious Diseases. VIGOR uses sequence similarity search against custom protein databases to identify protein coding regions, start and stop codons and other gene features. Ribonucleicacid editing and other features are accurately identified based on sequence similarity and signature residues. VIGOR produces four output files: a gene prediction file, a complementary DNA file, an alignment file, and a gene feature table file. The gene feature table can be used to create GenBank submission. VIGOR takes a single input: viral genomic sequences in FASTA format. VIGOR has been extended to predict genes for 12 viruses: measles virus, mumps virus, rubella virus, respiratory syncytial virus, alphavirus and Venezuelan equine encephalitis virus, norovirus, metapneumovirus, yellow fever virus, Japanese encephalitis virus, parainfluenza virus and Sendai virus. VIGOR accurately detects the complex gene features like ribonucleicacid editing, stop codon leakage and ribosomal shunting. Precisely identifying the mat_peptide cleavage for some viruses is a built-in feature of VIGOR. The gene predictions for these viruses have been evaluated by testing from 27 to 240 genomes from GenBank.
منابع مشابه
Induction of Nucleic Acid Damage in Viral Genomes using Riboflavin in Combination with UV Light
Background and Aims: Despite the screening of blood donors, blood transfusion represents an ideal port of entry for blood-borne infection. Blood-borne pathogen transmission has been a concern since the earliest days of transfusion. The blood product of platelet (PLT) concentrates is still faced with the risk of bacterial and viral contaminations. Pathogen inactivation technologies offer a proac...
متن کاملPneumoviruses: Molecular Genetics and Reverse Genetics
Pneumoviruses are responsible for significant respiratory disease in their hosts and represent a major problemfor human and animal health. Pneumoviruses are members of the family Paramyxoviridae, subfamilyPneumovirinae and the virus particles consist of a negative-sense, nonsegmented RNA genome within a helical nucleocapsid structure enveloped in a lipid membrane derived from the ho...
متن کاملAcquired Antimicrobial Resistance Genes of Escherichia coli Obtained from Nigeria: In silico Genome Analysis
Background: Antimicrobial resistance is a global problem with enormous public health and economic impact. This study was carried out to get an overview of acquired antimicrobial resistance gene sequences in the genomes of Escherichia coli isolated from different food sources and the environment in Nigeria. Methods: To determine the acquired antimicrobial-resistant genes prevalence, genome asse...
متن کاملInduction of Nucleic Acid Damage in Viral Genomes Using Riboflavin in Combination with UV Light
Background and Aims: Despite the screening of blood donors, blood transfusion represents an ideal port of entry for blood-borne infection. Blood-borne pathogen transmission has been a concern since the earliest days of transfusion. The blood product of platelet (PLT) concentrates is still faced with the risk of bacterial and viral contaminations. Pathogen inactivation technologies offer a proac...
متن کاملStudy on some aspects of seed viability and vigor
Influences on viability and germination of seeds have been studied intensively for many years, particularly for the numer-ous commercially important agricultural, ornamental, and timber species. High germinating seed lots may differ substantially in field emergence when sown at the same time in the same field, and/or may differ in performance after storage in the same environment or transport t...
متن کامل